Sub. Code: 6842

ou agree with this ulties in measuring (10)

inflation. (10)

Exam.Code: 0928 Sub. Code: 6903

1058

B.E. (Electronics and Communication Engineering)
Fourth Semester

MATHS-405: Linear Algebra and Complex Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

- 1. (A). Let $V = \mathbb{R}^3$ and (i) $W = \{(a, b, c); a, b \in \mathbb{R}\}$ then Show that W is a subspace of V.
 - (ii) $W = \{(a,b,c); a+b+c=0\}$ then Show that W is a subspace of V.
 - (iii) $W = \{(a, b, c); a \ge 0\}$ then Show that W is not a subspace of V. (1+1)
 - (B). Determine whether or not the following vectors in R^3 are linearly dependent:

$$u = (1, -2, 1), \quad v = (2, 1, -1), \quad w = (7, -4, 1)$$
 (1)

- (C). Show that similar matrices have the same eigen values. (2)
- (D) State Residue's Theorem. (1)
- (E). Define conformal and Isogonal mappings with examples. (1+1)
- (F). Show that the function $\frac{z^2 \overline{z}^2}{\overline{z}z}$ does not have a limit as z tends to 0. (2)

SECTION A

2. Let V be a finite dimensional vector space and $F: V \to U$ be a linear transformation. Then prove that

$$\dim V = rank(F) + Nullity(f)$$
 (10)

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)Find a basis and the dimension of the (i) Image of U of T (ii) Kernel W of T.

(5+5)

4. State and prove Cayley - Hamilton's Theorem.

(10)

SECTION B

- 5. Find the bilinear transformation which maps the points $z_1 = 1, z_2 = i, z_3 = -1$ onto the points $w_1 = i, w_2 = 0, w_3 = -i$. For this transformation, find the image of (i) $|z| \le 1$ (ii) Concentric circle |z| > r (r > 1).
- 6. (i) State necessary and sufficient conditions for a function f(z) of a complex variable to be analytic at appoint.
 - (ii) Evaluate $\oint_C \frac{z-1}{(z+1)^2(z-2)} dz \quad \text{where C is the circle : } |z-i| = 2$ (2)
- Expand the function $f(z) = \frac{1}{z(z^2 3z + 2)}$ in Laurent series for the regions
- (a) 0 < |z| < 1; (b) 1 < |z| < 2; (c) |z| > 2 (4+4+2)