Exam.Code: 0934 Sub. Code: 6978

1058

B.E. (Electrical and Electronics Engineering) Fourth Semester EE-402: Control Engineering

(May - 2017)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

- 1. Attempt all the following questions.
 - a. Elucidate feedback system and its effects?
 - b. Explain the advantages and disadvantages of block diagram representation.
 - c. How damping ratio affects the time response of a second order system?
 - d. Define (i) bandwidth and (ii) resonant peak.
 - e. Explain (i) gain margin and (ii) phase margin.

[5x2=10]

Section I

 Draw the signal flow graph and obtain transfer function for a system which is described by the set of following algebraic equations [10]

$$y_{2} = a_{12} y_{1} + a_{32} y_{3}$$

$$y_{3} = a_{23} y_{2} + a_{43} y_{4}$$

$$y_{4} = a_{24} y_{2} + a_{34} y_{3} + a_{44} y_{4}$$

$$y_{5} = a_{25} y_{2} + a_{45} y_{4}$$

Determine the value of K and a, so that the system shown in Figure 1 oscillates at frequency of 2 rad/s and has no poles in the right half of s plane.

Figure 1.

SHEET NO. -2-

- 4. Figure 2 shows the block diagram of servo mechanism using velocity feedback
 - a. Determine the forward path gain K which is required to produce oscillatory step response with an overshoot of 50%. Assume $K_v=0$.
 - b. Calculate frequency of damped oscillation [10]
 - c. Determine the value of K_v which will reduce the overshoot from 50% to 10%.

Section II

 Sketch the Nyquist plot and examine the closed loop stability of a control system having open loop transfer function given below:

$$G(s)H(s) = \frac{Ks(1+2s)}{s^3+4s+8}$$

6. Sketch the root locus diagram of the control system having the transfer function: [10]

$$G(s)H(s) = \frac{K(1+s)}{s(s-1)(s^2+4s+16)}$$

- 7. Write short notes on the following:
 - a. Stepper motors
 - b. Tacho-generators

[10]

1

1.

2

3

X-X-X