## 1048

## B.E., Second Semester AS-201: Engineering Mathematics – II (May – 2014 Common)

Time allowed: 3 Hours

Max. Marks: 50

**NOTE:** Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of programmable calculator is allowed.

x-x-x

## PART A

1. Solve the following differential equations:

(3+3+4)

- (a)  $x dy = (y + x^2 + 9y^2)dx$
- (b)  $(1+x^2)dy + 2xy dx = cot(x) dx$
- (c)  $(D^6 2D^3 + 1)y = e^{2x}$  where  $D \equiv \frac{d}{dx}$

2. (a) Find the general solution of the differential equation:

(5)

$$(D^2 + 1)y = x^2e^{2x} + \cos(2x)$$

(b) Solve the differential equation using Laplace transforms technique: (5)

$$(D^3 - 3D^2 + 3D - 1)y = t^2e^t$$
,  $y(0) = 1$ ,  $y'(0) = 0$ ,  $y''(0) = -2$ 

- 3. (a) State and prove convolution theorem for Laplace transform. (5)
  - (b) Using the method of variation of parameters solve the following differential equation: (5)

$$(D^2 + 4D + 4)y = \frac{2e^{-2x}}{x^2}$$

- 4. (a) Evaluate the integral  $\int_0^\infty \frac{e^{-t} e^{-3t}}{t} dt$ . (3)
  - (b) Find the Laplace transform of  $f(t) = e^{-4t} \int_0^t \frac{\sin(3u)}{u} du$ . (4)
  - (c) Find the inverse Laplace transform of  $\ln \frac{s+1}{s-1}$ . (3)

## PART B

5. (a) Find the general solution of the partial differential equation: (7)

$$(x-y)y^2p + (y-x)x^2q = (x^2+y^2)z$$

(b) Formulate the partial differential equation by eliminating the arbitrary function: (3)

$$f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$$

6. (a) Find the fourier series of the periodic function f(x) with period  $p = 2\pi$  defined below:

$$f(x) = \begin{cases} \pi e^{-x} & \text{if } -\pi < x < 0 \\ \pi e^{x} & \text{if } 0 < x < \pi \end{cases}$$

HITE

(b) Prove that

$$\int_{0}^{\infty} \frac{\sin(xw)\sin(xw)}{1-w^2} dw = \begin{cases} \pi \sin(x)/2 & \text{if } 0 \le x \le \pi \\ 0 & \text{if } x > \pi \end{cases}$$

- 7. (a) Find the fourier sine transform of  $f(x) = e^{-\pi x}$ . (6)
  - (b) Find the trigonometric polynomial approximation of degree N=2 for the function  $f(x)=x^2$   $(-\pi < x < \pi)$  for which the total square error with respect to this function is minimum on the interval  $[-\pi,\pi]$  (4)
- Find the solution of the one dimensional wave equation for an elastic string of length L which is fixed at the end points with initial deflection and initial velocity as f(x) and g(x) respectively.

X-X-x

1