Exam.Code:0906 Sub. Code: 6666

1058

B.E. (Mechanical Engineering) Second Semester APH-207: Physics of Materials (Common with ECE, IT and EEE)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

- Q. 1 (a) What do you understand by inversion symmetry in a cube.
 - (b) Sketch (121) plane in a cubic unit cell.
 - (c) Write a short note on fullerenes.
 - (d) Discuss two factors affecting the rate of diffusion.
 - (e) What is viscoelasticity?
 - (f) How grain size affects the strength of a material?
 - (g) Differentiate between resilience and toughness of a material.
 - (h) What information you get from a fractograph?
 - Explain Eutectic transformation with an example.
 - (j) What is temper embrittlement?

 (10×1)

Part A

- Q. 2 (a) Magnesium (At. mass 24.3 amu) has an HCP structure, a c/a ratio of 1.624, and a density of 1.74 g/cm³. Compute the atomic radius for Mg. (3)(b) Show that the void in a simple cube can be filled by sphere having radius not larger than 0.732R, where R is the radius of the larger sphere involved in the packing of these spheres. (3)(c) Discuss symmetry elements in a cube. (4)Q. 3 (a) What are dislocations? Differentiate between edge and screw dislocations. (3) (b) Monochramatic X-rays of $\lambda = 1.51 A^o$ are incident on a crystal face having an interplaner spacing of 1.61A°. Find various orders of Bragg's reflections. (c) The steady state diffusion flux through a metal plate is $7.8 \times 10^{-8} \text{ Kg/m}^2$ -s at a temperature of 1200°C and when the concentration gradient is -500 Kg/m⁴. Calculate the diffusion flux at 1000°C for the same concentration gradient and assuming an activation energy of 145,000 j/mol. (4) Q. 4 (a) Discuss three factors responsible for promoting non crystallinity in long chain polymers.
 - (3)
 - (b) Cite primary differences between the elastic, anelastic and plastic deformation behavior. (3)
 - (c) A steel bar and an aluminium bar are each under a load of 5000N. If the cross-sectional area of the steel bar is 100 mm², what must be the area of aluminium for the same elastic deformation. Given the young's moduli $E_{Al} = 71 \, GN/m^2$, $E_{steel} = 210 \, GN/m^2$. (4)

Sub-Constant

-2 -Part B

Tin

NO

Q. 5	(a)	What do you understand by slip system? Describe the mechanism of slip in a single crystal.	(5
	10 March 1950	What is cold work and how it affects the strength of a material?	(3
		Give at least three differences between a stable and an unstable crack	(2
Q. 6	(a)	Discuss three measures that can be taken to increase the resistance to fatigue of a metal alloy.	(3
	(b)	Discuss the creep behaviour of a metal w.r.t. time.	(3
	(c)	Discuss the development of microstructure in Cu-Ag alloy of eutectic composition as it is cooled a temperature above the eutectic temperature to a temperature below the eutectic temperature	
Q. 7	(a)	Explain the phenomenon of coring. Also cite undesirable consequences of coring.	(5
		Cite the differences between pearlite, bainite and spheroidite relative to microstructure and medical properties.	han (5