1048

B.E. (Electrical and Electronics Engineering)

Sixth Semester
EE-612: Signal and System
(May-2017)
lime allowed: 3 Hours
Max. Marks: 50
NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

$$
x-x-x
$$

Q.No. 1 (i) Define convolution integral and convolution sum.
(ii) Find the fourier transform for the signals (i) $\mathrm{x}(\mathrm{t})=\operatorname{sgn}$ (t) (ii) $\mathrm{x}(\mathrm{t})=1$.
(iii) What do you mean by aliasing?
(iv) Find the Laplace transform of $e^{-8 t} u(t)$?
(v) Determine the initial and final values of the discrete time sequence $x(n)$ having its Z-transform $X(z)=3+5 z^{-1}+7 z^{-2}$

Section - A

Q.No. 2 (a) Explain the signals and systems in electrical, thermal and biomedical systems. (5)
(b) An unknown discrete time causal LTI system yields $y(n)=\{1,3,6,10,12,12,10,6,3,1\}$ for input $x(n)=\{1,1,1,1\}$. Identify the system i.e. find $h(n)$ for this system.
Q.No. 3 (a) Find fourier series expansion for the given triangular sawtooth waveform:

(b) Find the fourier transform for:
(i) $e^{-a t} \cos \omega_{0} t u(t)$
(ii) sgnt
(iii) $u(t)$
Q. No. 4 (a) What do you mean by reconstruction using interpolation?
(b) Calculate the fourier series coefficients a_{k} for the signal $x(n)=\sin \omega_{0} n$.
Q.No. 5 (a) The input $x(n)$ and the output $y(n)$ of a causal stable LTI system are related as:

$$
\begin{equation*}
y(n)-\frac{1}{6} y(n-1)-\frac{1}{6} y(n-2)=x(n) \tag{5}
\end{equation*}
$$

(i) Calculate the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$.
(ii) Impulse response $h(n)$ of the system.
(b) State and proof the Parseval's relation for discrete time fourier transform.
Q.No. 6 (a) Find the inverse Z-transform for:

$$
\begin{align*}
& \text { (i) } x_{1}(z)=\frac{z}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)},|z|>\frac{1}{2} \\
& \text { (ii) } x_{2}(z)=\frac{z}{z^{2}+z+\frac{1}{2}} \tag{5}
\end{align*}
$$

(b) Find the Laplace transform of the following signals and give ROCs:
(i) $x_{1}(t)=e^{-3 t} u(t)+e^{-2 t} u(-t)$
(ii) $x_{2}(t)=e^{21} u(t)+e^{-3 t} u(-t)$
Q. No. 7 (a) What is Hilbert transform? List the properties of Hilbert transform.
(b) List down the properties of Z-transform.

$$
x-x-x
$$

