10

6

5

5

5

5

6

Exam.Code: 0943 Sub. Code: 6390

1078

B.E. (Mechanical Engineering) Seventh Semester EE-703: Finite Elements Methods

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, selecting atleast two questions from each Section. Assume suitable/missing data wherever applicable. Wherever applicable, the explanation should be with suitable example/sketch.

x-x-x

Section A

- Q1. For the axially loaded member as shown in the figure below, Determine:
 - a) Displacements at node 1, 2 and 3, b) Stress in the two sections and
 - c) Reaction at the end.

Given that

Area of the Aluminum rod = $39 \times 10^{-4} \text{ m}^2$, Area of the Brass rod = $13 \times 10^{-4} \text{ m}^2$ Length of the Aluminum rod = 1 m, Length of the Brass rod = 2 mModulus of elasticity of Aluminum = 70 GPA, Modulus of elasticity of Brass = 100 GPAAxial Load P2 = 300 kN, Axial Load P3 = 100 kN

- Q2. a) Explain in detail about Weighted- Residual method for FEA.
 - b) What is Saint Venant principle? Write its significance in FEA.
- Q3.
 a) Explain about the elimination approach and penalty approach to handle boundary conditions.
 - b) For a triangular element, the coordinates at node 1 are (2, 2), at node 2 are (8, 4) and at node 3 are (4, 8). Determine the strain displacement matrix and hence determine the strains, if nodal disp are q1 = 0.001, q2 = -0.004, q3 = 0.003, q4 = 0.002, q5 = -0.002, q6 = 0.005
- Q4. a) Derive the stress strain relations for a three-dimensional element?
 - b) What are the conditions for the problem to be Axisymmetric? List any four commonly used axisymmetric elements mentioning their application

Section B

- O5. a) Derive the load vector for uniformly distributed load in beam.
 - b) Differentiate among Bar element, Truss element and Beam element indicating D.O.F and geometry characteristics.

Q6. For the two bar truss system, determine the nodal displacements, element stresses and support reactions. A force of P=1050 kN is applied at node 1.

Assume E= 200 GPa and A= 600 mm² for each element.

- Q7. a) Write the difference between static and dynamic finite element analysis. How Guyan reduction is helpful in the analysis.
 - b) Determine the element mass matrix for one-dimensional dynamic structural analysis problems. Assume the two-node, linear element.
- Q8. a) What do you understand by structural and topology optimization? Explain 5
 - b) Write short note on deformed configuration and mode shape.

スーメーメ