Exam.Code:0931 Sub. Code: 6378

## 1078

## **B.E.** (Electronics and Communication Engineering) Seventh Semester EC-709: Digital Signal Processing

Max. Marks: 50 Time allowed: 3 Hours

NOTE: Attempt five questions in all, including Question No. 1 which is compulsory and selecting two questions from each Section.

- 1. a. Discuss the circular addressing modes of TMS320C5X processor
  - b. Compare FIR and IIR filters.
  - c. State and prove the following properties of z-transform.
    - i. Time scaling
    - ii Differentiation
  - d. Explain the relation between the z-transform and DFT.
  - e. What are the effects of finite word length in digital filters?

(5.2)

## Section A

- 2. a. Describe time frequency analysis of signals using wavelet transforms. How increasing frequency resolution does decreases time resolution. b. Derive the DFT of the sample data sequence  $x(n) = \{1,1\}$  and compute the corresponding (5+5)amplitude and phase spectrum.
- 3. a. Given  $x(n) = \{0,1,2,3,4,5,6,7\}$ . find X(k) using DIT FFT algorithm. b. Determine the causal signal x(n) having the z-transform using partial fraction method  $X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$  (54)

(5+5)

4. Find the response of an FIR filter with impulse response  $h(n) = \{1, 2, 4\}$  to the input sequence  $x(n) = \{1,2\}$  using linear and circular convolution. Compare the results.(10)

## Section B

- 5. a. Describe the frequency domain analysis of Decimator. What are the effects of decimation on frequency spectrum of the signal?
  - b. Determine H(z) for a Butterworth filter satisfying following constraints

$$\sqrt{0.5} \le |H(e^{jw})| \le 1$$
  $0 \le w \le \pi/2$ 

$$\left| H(e^{jw}) \right| \le 0.2$$
  $3\pi/4 \le w \le \pi$  with T = 1s. Apply impulse invariant transformation. (5+5)

6. a. Name the different types of window functions. How they are defined? b. Obtain the cascade realization of the system characterized by the transfer function

$$H(z) = \frac{2(z+2)}{z(z-0.1)(z+0.5)(z+0.4)}$$
 (5+5)

- $H(z) = \frac{2(z+2)}{z(z-0.1)(z+0.5)(z+0.4)}$ 7. a. Apply bilinear transformation to  $H(s) = \frac{2}{(s+1)(s+3)}$  with T = 0.1s.
  - b. Discuss the architecture of TMS320CXX series processor and also discuss the (5+5) memory management block.