Exam.Code: 0935 Sub. Code: 6984

1078

B.E. (Electrical and Electronics Engineering) Fifth Semester

EE-508: Electromagnetic Fields Theory

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) State Gauss's law for electric field.
 - b) State Ampere's circuit law.
 - c) Write Laplace and Poisson's equations.
 - d) Write the point form of continuity equation.
 - e) A parallel plate capacitor with d = 1m and plate area 0.8 m² and a dielectric relative permittivity of 2.8. A dc volt of 500V is applied between the plates. Find the capacitance and energy stored. (5x2)

UNIT-I

- II. a) Derive the Stoke's theorem and give one application of the theorem in electromagnetic fields.
 - b) Determine the curl of the following vector field: $A = \rho z \sin \varphi a_p + 3\rho z \cos \varphi a_{\varphi}$
- III. a) Derive continuity equation for current.
 - b) Derive the expression for capacitance between two co-axial cylinders of radii 'a' (inner) and 'b' (outer) respectively. (5,5)
- IV. a) Given point p (-2,6,3) and A = yi + (x+z)j, express p and A in cylindrical coordinates.
 - b) State the divergence theorem.

(8,2)

(6,4)

UNIT-II

 V. a) Derive magnetic flux density and field intensity at any point along the axis of circular coil.

P.T.O.

b) State Biot-Savart's law.

(8,2)

VI. Derive the Poynting theorem and give its significance.

(10)

VII. a) Derive H due to a circular current loop and extend the same to compute H due to a long solenoid.

b) Explain the need of displacement current in Maxwell's equations.

(6,4)

x-x-x