Exam. Code: 0929 Sub. Code: 6914

1078

B. Engg. (Electronics & Comm. Engg.) 5th Semester

EC-513: Control Systems

Time allowed: 3 Hours

Max. Marks: 50

Attempt five questions in all, including Q. No. 1 which is compulsory and NOTE: selecting atleast two questions from each Unit. * * *

- I. (a) Compare open loop & closed loop control system.
 - What is D'Alembert Principle? (b)
 - What is Phase Margin & Gain Margin? (c)
 - Define stability & relative stability. (d)
 - Compute State Transition Matrix (STM) when $A = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}$ (5×2) (e)

UNIT-I

- Write note on temperature control system. II. (a)
 - What is servomechanism? (b)
 - Obtain the transfer function $\frac{C(s)}{R(s)}$ for given block diagram using signal (c)

Write note on AC & DC Techo-generators. III. (a)

(b) For a system having
$$G(s) = \frac{25}{s(s+10)}$$
 and unity feedback, find (i) w_n (ii) s (iii) w_d (iv) t_p and (v) M_p . (5+5)

- IV. Examine the stability of the system having characteristics equation (a) $s^5 + s^4 + 3s^3 + 3s^2 + 4s + 8 = 0$
 - For a unity feedback system the open loop transfer function is given by: (b)

$$G(s) = \frac{K}{s(s+2)(s^2+6s+25)}$$

- Sketch the root locus for $0 \le K \le \infty$ (i)
- At what value of K, the system becomes unstable (4+6)(ii)

P.T.O.

UNIT-II

V. Sketch the Bode Plot for the transfer function $G(s) = \frac{1000}{(1+0.1s)(1+0.001s)}$.

Determine:

- (a) Phase margin
- (b) Gain margin
- (c) Stability of system (10)
- VI. Use Nyquist Criterion, determine whether the closed loop system having the following open loop transfer function is stable or not:

$$G(s)H(s) = \frac{1+4s}{s^2(1+s)(1+2s)}$$
 (10)

- VII. (a) What is compensation? Write note on phase lag network.
 - (b) A single input single output system is given as

$$x(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} x(t)$$

Test for controllability & observability.

**_*_

(5+5)