Exam.Code: 0917 Sub. Code: 6790

1078

B.E. (Computer Science and Engineering) Fifth Semester

CSE-505: Theory of Computation

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Section.

x-x-x

- I. Write short answers of the following:
 - a. Prove or disapprove: $(R + S)^*S = (R^*S)^*$
 - b. Is the grammar $S \to SS|S|S(S)S|\epsilon$ ambiguous? Why or why not?
 - c. What are recursive and recursively enumerable languages?
 - d. What is difference between Kleene closure and Kleene positive closure? Give example.
 - e. State the halting problem of Turing machines.

Section-A

II.

- a. State pumping lemma for regular sets. Using pumping lemma, show that the set $\{a^nb^{2n}|n>0\}$ is not regular.
- b. Construct a minimum state automaton equivalent to DFA whose transition table is given below:

State	0	1
$\rightarrow q_1$	q_2	q_3
q ₂	q ₃	q ₅
Q ₃ Final state	q ₄	q ₃
q ₄	q ₃	q ₅
Q ₅ Final state	q_2	q ₅

III. Begin with the grammar:

 $S \rightarrow ABC|BaB$ $A \rightarrow aA|BaC|aaa$ $B \rightarrow bBb|a|D$ $C \rightarrow CA|AC$ $D \rightarrow \epsilon$

- a. Eliminate ϵ -productions.
- b. Eliminate any unit productions in the resulting grammar.
- c. Eliminate any useless symbols in the resulting grammar.
- d. Put the resulting grammar into Chomsky Normal Form.

IV.

- a. Define regular expression. Show that $(1+00^*1) + (1+00^*1)(0+10^*1)^*(0+10^*1) = 0^*1(0+10^*1)^*$.
- b. Convert the regular expression $011(0+1)^*$ to equivalent
 - i. NFA with ϵ -transitions
 - ii. NFA without ϵ -transitions
 - iii. DFA

Section-B

V.

- a. Convert the grammar $S \to S0S1S0S|S0S0S1S|S1S0S0S|\epsilon$ to a PDA that accepts the same language by empty stack.
- b. State the pumping lemma for Context-free languages. Using pumping lemma, show that the language $\{0^m1^n|m\neq n\}$ is not context-free.

VI.

- a. Describe Turing machine model. Describe multi-tape Turing machine as an extension to the basic Turing machine. Does the multi-tape Turing machine and basic Turing-machine have same language-recognizing power? Comment.
- b. Design a Push-down Automaton to accept the language $\{0^n1^m0^m1^n|m,n\geq 1\}$. Accept either by final state or empty stack.

Chicae 2 Maile Print Comit

VII. Write short notes on:

- a. Tractable and intractable problems
- b. Polynomial time reductions
