Exam. Code: 0939

Sub. Code: 7045

1078

B. Engg. (Mechanical Engg.)

3rd Semester AS-301: MATHS-3

Time allowed: 3 Hours

Max. Marks: 50

Attempt five questions in all, including Q. No. 1 which is compulsory and NOTE: selecting atleast two questions from each Unit.

- Define bounded sequence and monotonic sequences with suitable I. (a) examples. Examine the same for the sequences: (i) $a_n = \left\{ \frac{1}{2^n} \right\}$ (ii) $a_n = \{(-1)^n\}$
 - State Taylor's series for the approximation of a function. Explain how the (b) error is estimated using it.
 - Write down any two Define eigenvalue problem of the matrices. (c) applications of this problem. Obtain the eigenvalues and eigenvectors for

the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

- Examine whether or not w=cos z is bounded or not? Justify your answer. (d)
- Define conformal and isogonal mapping with suitable examples. Also (e) (5×2) define critical points of a mapping.

UNIT-I

Examine which of the following sequences {a_n} converge, and which II. (a) diverge? Find the limit of each convergent sequence:

(i)
$$a_n = n - \sqrt{n^2 - n}$$

(i)
$$a_n = n - \sqrt{n^2 - n}$$
 (ii) $a_n = \frac{1}{\sqrt{n^2 - 1} - \sqrt{n^2 + n}}$ (iv) $a_n = \left(\frac{n}{3n - 1}\right)^n$

(iii)
$$a_n = \left(\frac{n}{n+1}\right)^n$$

$$(iv) a_n = \left(\frac{3n+1}{3n-1}\right)^n$$

State and prove Cauchy's integral test. Hence, examine the convergence (b) of the p-series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (5+5)

For the following power series, find radius and interval of convergence. III. (a) For what values of x does the series converge (i) absolutely, (ii) conditionally?

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(3x+1)^{n+1}}{2n+2}$$

P.T.O.

- (b) Describe the principle involved in the Gauss elimination method. Solve the system: x+10y-z=3; 2x+3y+20z=7 and 10x-y+2z=4 using it with partial pivoting. (5+5)
- IV. (a) Examine whether the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ in diagonalizable? If so, obtain the matrix P such that $P^{-1}AP$ is a diagonal matrix.
 - (b) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$. Also find A^{-1} . (5+5)

UNIT-II

- V. (a) Examine the confinity of the function $f(z) = \begin{cases} \frac{\text{Im}(z)}{|z|}, & z \neq 0 \\ 0, & z \neq 0 \end{cases}$ about the point z=0.
 - (b) Show that the function $f(z) = \overline{z}$ is continuous at the point z=0 but not differentiable at z=0.
 - (c) Prove that the function $w=\cos z$ is analytic in the finite z-plane. (3+4+3)
- VI. (a) Prove that the function $v(x, y) = e^x \sin y$ is harmonic. Find its conjugate harmonic function u(x,y) and the corresponding function f(z).
 - (b) Find all the Taylor's and Laurent series expansion of $f(z) = \frac{1}{z^2 1}$ about $z_0 = 1$. (5+5)
- VII. (a) Evaluate the integral: $I = \int_{0}^{2\pi} \frac{d\theta}{2 + \sin \theta}$
 - (b) Find the bilinear transformation which maps 1,i,-1 to 2, i,-2 respectively. Find the fixed and critical points of the mapping. (5+5)

**_*_