Exam. Code: 0933 Sub. Code: 6974

1078

B. Engg. (Electrical & Electronics Engg.) 3rd Semester

MATHS-301: Linear Algebra and Complex Analysis

Time allowed: 3 Hours

Max. Marks: 50

Attempt five questions in all, including Q. No. 1 which is compulsory and NOTE: selecting atleast two questions from each Unit. Use of simple calculator is allowed.

**_*_

Define linear span. Determine the span of each of the following rectors in I. (a) R^3 :

(i)

 $S_1 = \{(1,0,0)\}$ (ii) $S_2 = \{(1,0,0), (0,1,0)\}$

- Show that intersection of two subspaces of a vector space in a subspace. (b)
- Define singular and non-singular linear maps. Determine whether or not (c) the linear map given by $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x - y, x - 2y)is singular or non-singular. If non-singular, then find T^{-1} .
- Define harmonic functions with suitable example. Write down their (d) applications.
- Define conformal and isogonal mapping with suitable examples. (5×2) (e)

UNIT-I

Solve the system of equations: II. (a)

$$x + 2y - 2z = 1,$$

$$2x - 3y + z = 0$$

$$5x + y - 5z = 1$$

3x + 14y - 12z = 5 by Gauss elimination method.

- Define basis of a vector space. Prove that the subset s of R³ is a spanning (b) set of R³, but not a basis of R³: $S = \{(2,2,3), (-1-2,1), (0,1,0)\}$ (5+5)
- If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ express $A^6 4A^5 + 8A^4 12A^3 + 14A^2$ as a III. (a) polynomial in A. Also, verify Cayley-Hamilton theorem and compute A^{-1} .
 - Examine whether the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ in diagonalizable or not? If (b)

diagonalizable, then diagonalize it.

(5+5)*P.T.O.*

(5+5)

- IV. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z) = (x + 2y z, y + z, x + y 2z). Find a basis and the dimensions of (i) the image of T, (ii) the null space of T.
 - (b) Consider the linear transformation T on R^2 defined by T(x, y) = (5x y, 2x + y) and the following bases of R^2 : $E = \{\overline{e}_1, \overline{e}_2\} = \{(1,0), (0,1)\}$ $S = \{\overline{u}_1, \overline{u}_2\} = \{(1,4), (2,7)\}$
 - (i) Find the change of basis matrix P from E to S and the change of basis matrix Q from S back to E.
 - (ii) Find the matrix A in at representing T in the basis E.
 - (iii) Find the matrix B that represents T in the basis S. (5+5)

UNIT-II

- V. (a) Define analytic function with a suitable example. If $u(x, y) = e^{-x}(x \sin y y \cos y)$ then form analytic function $w = u(x, y) + i(\cos y)$,
 - (b) (i) Find all values of z such that $\sinh z = e^{\frac{\pi i}{3}}$
 - (ii) Examine whether the function $f(z) = \begin{cases} \frac{\text{Re}(z^2)}{|z|^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is continuous at z=0 or not?
- VI. (a) Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in Laurent series valid for:
 - (i) |z-1| > 1 (ii) 0 < |z-2| < 1
 - (b) Define three types of isolated singularities with an example for each. (5+5)
- VII. (a) Evaluate $\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$ using residue theorem of integration.
 - (b) Discuss the mapping $w = z + \frac{1}{z}$. (5+5)

**_*_