Exam. Code: 0907

Sub. Code: 6699

1078

B. Engg. (Bio-Technology)-3rd Semester AS-301: Engg. Mathematics-III *(Common)*

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Q. No. 1 which is compulsory and selecting atleast two questions from each Unit.

**_*_

- I. (a) Define limit of a sequence. Prove that limits of sequences are unique.
 - (b) Prove that if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$ but the converse is not true.
 - (c) Describe the principle involved in the Gauss-Jordan method for finding the inverse of a square matrix A.
 - (d) Find all values of z which satisfy $e^z = 1 + i$.
 - (e) Classify the singular point z=0 of the function: $f(z) = \frac{e^z}{z \sin z}$ (5×2)

UNIT-I

- II. (a) Find all the values of z such that $\sin z = 2$.
 - (b) Show that the function $f(z) = |z|^2$ in differentiable only at z=0 and no where else.
 - (c) Prove that $w = \sin z$ is analytic in the finite z-plane. (4+3+3)
- III. (a) If f(z) is analytic in a domain D and |f(z)| in a non-zero constant in D, then prove that f(z) is constant in D.
 - (b) Find all possible Taylor's and Laurent series expansion for the function: $f(z) = \frac{1}{z(z-1)} \text{ about } z_0=0.$ (5+5)
- IV. (a) State residue theorem. Evaluate the integral: $I = \oint_C \frac{dz}{(z-1)(z-2)^2}$, where $C: |z-2| = \frac{1}{2}$

(b) Evaluate the integral:
$$I = \int_{0}^{2\pi} \frac{d\theta}{a + \cos \theta}, a > 1$$
 (5+5)

P.T.O.

UNIT-II

- Examine which of the following sequences converge, and which diverge? V. (a) Find the limit of each convergent sequence:
 - (i) $a_n = \frac{\sin n}{n}$

(ii)
$$a_n = \frac{(\ln n)^{100}}{n}$$

(iii) $a_n = \tan^{-1} n$

(iv)
$$a_n = \frac{(\ln n)}{n \frac{1}{n}}$$

- Examine the convergence or divergence of the following series: (b)
- (ii) $\sum_{n=0}^{\infty} \frac{2}{1+e^n}$
- (iii) $\sum_{n=0}^{\infty} \frac{3}{n!}$ (iv) $\sum_{n=0}^{\infty} \frac{(-100)^n}{n!}$ (5+5)
- Find the radius and interval of convergence for the series: $\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{\frac{3}{2}}$. VI. (a)

For what values of x does the series converge:

- absolutely, (i)
- (ii) conditionally
- Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$, using the Gauss-Jordan (b) (5+5)method with partial pivoting.
- Show that the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is diagonalizable. Find P such that VII. (a) $P^{-1}AP$ in diagonal matrix.
 - Verify Caylley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and (b) (5+5)hence find A^{-1} .