Exam.Code:0935 Sub. Code: 6984

1128

B.E. (Electrical and Electronics Engineering) Fifth Semester

EE-508: Electromagnetic Fields Theory

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- Attempt the following:-I.
 - a) State Coulomb's law.
 - b) Give the relationship between potential gradient and electric field.
 - c) What is the complex Poynting vector?
 - d) What is the significance of displacement current?
 - e) Write the point form of continuity equation.

(5x2)

UNIT-I

- a) Derive the Stoke's theorem and give one application of the theorem in II. electromagnetic fields.
 - b) Transform the vector A = 3i-2j-4k at p(x=2, y=3, z=3) to cylindrical coordinate.
- a) Obtain the expression for energy stored in magnetic field and also derive an III. expression for magnetic energy density.
 - b) State superposition theorem in relevance to field theory and derive the equation for (5,5)total electric field intensity.
- a) A uniform cylindrical coil of 2000 turns is 60 m long and 5 cm diameter. If the coil IV. carriers a current of 10 mA, find the magnetic flux density:
 - i) At the centre of the coil
 - ii) On the axis at one end of the coil
 - iii) On the axis half wave between the centre and one end of the coil

(2)

- b) Explain 'the following:
 - i) Curl
 - ii) Divergence and
 - iii) Gradient

(6,4)

UNIT - II

- V. a) What is Poynting vector? Derive the expression for Poynting theorem.
 - b) Differentiate between conduction and displacement current and derive the expression for it. (5,5)
- VI. State and explain Faraday's law of electromagnetic induction. Hence derive the expressions for statically and dynamically induced emfs. (10)
- VII. a) Derive the expression for inductance of a solenoid.
 - b) Define electrostatic energy and energy density.
 - c) Derive the relationship between electric field and magnetic field. (4,4,2)