Exam. Code: 0939 Sub. Code: 7045

1128

Bachelor of Engineering (Mechanical Engineering) 3rd Semester

AS - 301: Maths - 3

Time allowed: 3 Hours

Max. Marks: 50

Note: Attempt five questions in all, including Question No. 1 which is compulsory and selecting two questions from each Unit.

0-0-0

- I. Attempt the following questions:-
 - Define limit of a sequence, convergent and bounded sequence with suitable a) examples. Give an example of a sequence which is not convergent.
 - Define an alternating series and state the test used for checking its b) convergence. When an alternating series is said to be absolutely convergent and conditionally convergent? Give example.
 - Explain partial and complete pivoting in connection with Gauss elimination c) method.
 - Prove that $f(z) = \overline{Z}$ is not analytic at any point. d)
 - Locate and classify the singular points of $f(z) = \frac{z \sin z}{z^3}$. e) (5×2)

UNIT-I

Which of the following sequences $\{a_n\}$ converge and which diverge? Find the II. limit of each convergent sequence:-

i)
$$a_n = n - \sqrt{n^2 - n}$$

$$a_n = \left(\frac{5n+1}{5n-1}\right)^n$$

iii)
$$a_n = Sinh(\ell nn)$$

iv)
$$a_n = \ell nn - \ell n(n+1)$$

b) Discuss the convergence or divergence of the following series:-

i)
$$\sum_{n=1}^{\infty} \frac{Cosn\pi}{n}$$
 ii)

i)
$$\sum_{n=1}^{\infty} \frac{Cosn\pi}{n}$$
 ii)
$$\sum_{n=1}^{\infty} \frac{\tanh n}{n^2}$$
 iii)
$$\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$$
 iv)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{3/2}}$$
 (10)

- State and prove Cauchy's integral test. Hence, discuss the convergence or III. a) divergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^n}$, (p a real constant).
 - Prove that the vectors $\vec{V}_1 = (2,1,1), \vec{V}_2 = (1,2,2), \vec{V}_3 = (1,1,1),$ are linearly b) independent:
 - Solve the linear system by Gauss elimination method:c) 2x + y + z = 10, 3x + 2y + 2z = 18, and x + 4y + 9z = 16(10)

- IV. a) Find the matrix P that diagonalizes $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$. Also determine P⁻¹ AP.
 - b) Using Cayley-Hamilton theorem, find A⁻¹ where $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$.
 - c) Examine whether $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is similar to $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. (10)

UNIT - II

- V. a) If f(z) is analytic in a domain D and if (z) is a non-zero constant in D, then prove that f(z) is constant in D.
 - b) Prove that the function $u(x, y) = 2x + y^3 3x^2y$ is harmonic. Find conjugate harmonic function v(x, y) and the corresponding analytic function f(z). (10)
- VI. a) Prove that W = Sin Z is not a bounded function.
 - b) Discuss the mapping $W = e^z$.
 - c) Find two bilinear transformations whose fixed points are 1 and 2. (10)
- VII. a) Exapand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for:
 - i) |<|z|<3
 - ii) 0 < |z + 1| < 2
 - iii) |z| > 3
 - b) Using the complex variable technique, evaluate $I = \int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$ (10)