Exam. Code: 0939 Sub. Code: 6699

1128

Bachelor of Engineering (Mechanical Engineering) 3rd Semester

AS - 301: Engineering Mathematics - III

Time allowed: 3 Hours

Max. Marks: 50

Note: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting <u>two</u> questions from each Unit.

0 - 0 - 0

- I. Attempt the following questions:
 - a) Prove that for every convergent series $\sum_{n=1}^{\infty} u_n$, $\lim_{n \to \infty} u_n = 0$, but the converse is not true.
 - b) Define Eigen value problem of matrices. Find the eigen values of A^T , A^{-1} , where $A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 11 \end{bmatrix}$
 - c) Prove that similar matrices have the same Eigen values, but the converse is not true.
 - d) Does the $\lim_{z\to 0} \frac{z}{\bar{z}}$ exist? If yes, find it. If not, explain it.
 - e) Define residue and find the same for $f(z) = z \cdot \cos \frac{1}{z}$ at z = 0. (5×2)

UNIT – I

II. a) Which of the following sequences $\{a_n\}$ converge, and which diverge? Find the limit of each convergent sequence:-

i)
$$a_n = \int_{1}^{n} \frac{1}{x^n} dx, p > 1$$
 ii) $a_n = \frac{\left(\frac{10}{11}\right)^n}{\left(\frac{9}{10}\right)^n + \left(\frac{11}{12}\right)^n}$

iii)
$$a_n = n - \sqrt{n^2 - n}$$
 iv) $a_n = \sin h (\ell nn)$

- b) State and prove Cauchy's integral test. Hence, discuss the convergence or divergence of the p-series: $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$ (5,5)
- III. a) Find the radius and interval of convergence for the series: $\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{\frac{3}{2}}}$. For what values of x does the series converge; i) absolutely, ii) Conditionally?
 - b) Express the matrix $A = \begin{bmatrix} 5 & 1 \\ -1 & 9 \end{bmatrix}$ as a linear combination of the matrices:-

$$\begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \ \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \ \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$$

c) Find the rank of the matrix:-

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 3 & -1 & 1 \\ 5 & 4 & 2 & 0 \end{bmatrix} \tag{4,3,3}$$

- IV. a) Solve the following system by Gauss elimination method: 2x + y + z = 10, 3x + 2y + 2z = 18, x + 4y + 9z = 16
 - b) Examine whether $A = \begin{bmatrix} 7 & 7 \\ -2 & 0 \end{bmatrix}$, is similar to $B = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$ or not?
 - The eigen vectors of a 3×3 matrix corresponding to the eigen values 2, 2, 4 are $(-2, 1, 0)^T$, $(-1, 0, 1)^T$, $(1, 0, 1)^T$, respectively. Find the matrix A. (4,3,3)

UNIT - II

- V. a) Prove that W=Cos Z is not a bounded function.
 - b) Prove that the function $f(z) = \begin{cases} \frac{\overline{(z)^2}}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is not differentiable at z = 0, even though C-R equations are satisfied there.
 - Prove that the function $u(x, y) = x^3 3xy^2 5y$ is harmonic everywhere. Also find the conjugate harmonic of u(x, y). (3,4,3)
- VI. a) Find the Laurent's series expansion of $f(z) = \frac{1}{z-z^3}$ in the region 1 < |z+1| < 2.
 - Explain and write different type of isolated singularities. Give one example of each. Also prove that if an analytic function w = f(z) has a pole of order m at $z = z_0$, then $\frac{1}{f(z)}$ has a zero of order m at $z = z_0$. (5,5)
- VII. a) Discuss the mapping $w = z + \frac{1}{z}$
 - b) Using residue theorem, prove that:-

$$\int_{0}^{2\pi} \frac{d\theta}{1 - 2p\cos\theta + p^{2}} = \frac{2\pi}{1 - p^{2}}, 0 < |p| < 1$$
 (5,5)