Exam.Code: 0939 Sub. Code: 7041

No.

1128 B.E. (Mechanical Engineering) Third Semester MEC-301: Applied Thermodynamics – I

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

X-X-X

- I. Attempt the following:
 - a) Why compounding of steam turbines is done?
 - b) What is stage efficiency of a turbine? Give formulation.
 - c) Differentiate between boiler mountings and accessories?
 - d) What are the losses in steam turbines?
 - e) Differentiate between impulse and reaction turbines?

(5x2)

UNIT - I

- II. a) What is the effect of friction of the efficiency of the nozzle?
 - b) How the efficiency of rankine cycle improves with feed water heating? Explain using TS and HS diagrams and find relation for thermal efficiency. (4,6)
- III. a) Write a note on metastable flow through nozzles.
 - b) An industrial steam power plant is supplied with steam at 80Bar 350°C and steam is discharged at atmospheric pressure of 712.5mm of Hg. Calculate thermal efficiency and turbine work for a steam flow rate of 2kg/s. Do not neglect pump work.

 (4,6)
- IV Prove that for 50% reaction turbine, the inlet and exit angles of moving and fixed blades are equal.

UNIT - II

- V. a) Compare water tube boilers with gas tube boilers.
 - b) Explain the working of Lancashire boiler with labelled diagram.

(3,7)

- VI. What are the methods used to improve the efficiency of rankine cycle, explain in detail with diagrams (10)
- VII. A three stage turbine is supplied with steam at 0 bar and 350°C. The condenser pressure is 0.04bar. The intermediate pressures are 5 bar and 1 bar. Assuming efficiency of each stage to be 80%, determine: Adiabatic heat drop, reheat factor and internal efficiency of turbine representing the processes on TS and HS Diagrams. (10)