Exam. Code: 0921 Sub. Code: 6831

1128

B. Engg. (Information Technology) 3rd Semester

MATHS-303: Linear Algebra and Probability Theory

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Q. No. I (Unit-I) which is compulsory and selecting atleast two questions each from Unit II-III.

UNIT-I

- I. (a) Find the conditions on a,b,c so that $\vec{v} = (a,b,c)$ in IR^3 belongs to linear span of vectors (1,2,0) (-1,1,2) (3,0,-4).
 - (b) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by F(x, y) = (2x + 3y, 4x 5y). Find the matrix representation of F relative to the basis $\{(1,-2),(2,-5)\}$ of $I\mathbb{R}^2$.
 - (c) A speaks truth 4 out of 5 times. A die is tossed. He reports that there is a six. What is the probability that actually there was six?
 - (d) A box contains 'a' white and 'b' black balls. 'c' balls are drawn at random. Find the expected value of the number of white balls drawn. (3+2+3+2)

UNIT-II

- II. (a) Find the coordinate vector of $3t^3 4t^2 + 2t 5$ relative to the basis $\{(t-1)^3, (t-1)^2, (t-1), 1\}$ of $P_3(t)$.
 - (b) Find a linear mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ whose image is spanned by (1,2,3) and (4,5,6). (5+5)
- III. (a) Find the characteristics polynomial of matrix

$$\begin{bmatrix} 2 & 5 & 1 & 1 \\ 1 & 4 & 2 & 2 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

(b) Reduce the matrix $\begin{bmatrix} 1 & -2 & 3 & 1 & 2 \\ 1 & 1 & 4 & -1 & 3 \\ 2 & 5 & 9 & -2 & 8 \end{bmatrix}$ to echelon form. (5+5)

Tib. Code: 6831 Verify the characteristic equation for the matrix $\begin{vmatrix} 3 & -5 & 3 \end{vmatrix}$. IV. (a) 6 -6 4

> State Rank-Nullity theorem and verify it form the linear (b) by defined $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformation T(x, y, z) = (2x + y - 2z, 2x + 3y - 4z x + y - z).(5+5)

> > UNIT-III

Two random variables X and Y have the following probability V. (a) density function $f(x, y) = \begin{cases} 2 - x - y & \text{; } 0 \le x \le 1 \\ 0 & \text{; otherwise} \end{cases}$ $0 \le y \le 1$

Find Var(X) and Var(Y). Also find covariance between X and Y.

- After correcting 50 pages of the proof of a book, the proof reader (b) finds that there are, on the average, 2 errors per 5 pages. How many pages would one expect to find with 0,1,2,3 and 4 errors, in 1000 (5+5)pages of the first print of the book?
- In a binomial distribution consisting of 5 independent trials, VI. (a) probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter p of the distribution.

For the joint probability distribution of two random variables X and (b)

Y given below:

am. Code: 0921

1 BIVOL	1	2	3	4	Total
1	4		2	1	10
	36	$\frac{3}{36}$	36	36	10 36
2	1			2	9 36
	36	$\frac{3}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	36
3	5/36	Zamana and the later	Autority or Autority	1	8 36
	/36	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	36
4	1	2/36	CHEST STORY	5/36	$\frac{9}{36}$
1000	36	/36	$\frac{1}{36}$	/30	36
Total		9		$\frac{9}{36}$	1 2 S and
	$\frac{11}{36}$	$\frac{9}{36}$	$\frac{7}{36}$	36	

Find conditional distribution of X given the value of Y=1 and that of Y given the value of X=2.

A symmetric dic is thrown 600 times. Find the lower bound for the VII. (a) probability of getting 80 to 120 sixes.

What is the probability that atleast two out of n people have the same (b) birthday? Assume 365 days in a year and all days are equally likely. (5+5)