Exam. Code: 0933 Sub. Code: 6974

1128

Bachelor of Engineering (Electrical and Electronics Engineering) 3rd Semester

MATHS - 301: Linear Algebra and Complex Analysis

Time allowed: 3 Hours

Max. Marks: 50

Note: Attempt any <u>five</u> questions, including Question No. 1 which is compulsory and selecting at least two questions from each Unit.

0-0-0

- I. Attempt the following questions:
 - a) Define a vector space with suitable example.
 - b) Show that the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ is a linear combination of:- $X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $y = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
 - c) Is $W = \{(x, y)1x = 3y + 1\}$ is a sub-space of R^2 ?
 - d) Is $S = \{(0,0,0) \text{ Lim early dependent? Justify.}$
 - e) Prove that similar matrices gave same eigen values.
 - f) Find the values of e^z for which z is a pure imaginary. List out the differences and similarities between e^x and e^z .
 - g) Prove that $f(z) = |z|^2$ is not analytic at any point.
 - h) If f(z) has a simple pole at z = a, then Res. $f(a) = \lim_{z \to a} (z-a) f(z)$.
 - i) Find the image of |z + 1| under the mapping $w = \frac{1}{z}$
 - j) Find the fixed and critical points of the mapping $w = z^3$ (10×1)

UNIT-I

- II. a) Solve the following system by Gauss elimination method:- 2x + y + z = 10, 3x + 2y + 2z = 18, x + 4y + 9z = 16
 - b) Find the rank of the matrix $A = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8 \end{bmatrix}$
 - Prove that the set of all 2×2 matrices of the form $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}$ with addition defined by: $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+c & 1 \\ 1 & b+d \end{bmatrix}$ and scalar multiplication $k \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = \begin{bmatrix} ka & 1 \\ 1 & kb \end{bmatrix}$ is a vector space. (3,3,4)
- III. a) Determine which of the following are subspaces of R^3 :
 - i) all the vectors of the form (a, b, c), where b = a + c.
 - ii) all the vectors of the form (a, b, c), where b = a + c + 1.
 - State rank-nullity theorem. Verify it for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x + y + z, x + y)

c) Find the basis for the column space of:-

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$
(3,4,3)

- IV. a) Using Cayley Hamilton theorem, find A⁻¹ where $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.
 - b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by: T(x, y, z) = (3x, x - y, 2x + y + z). Show that T is invertible and find T^{-1} .
 - Consider the linear transformation T on R^2 defined by T(x,y) = (2x 3y, x + 4y) and the following bases of R^2 :- $S = \{(1,0), (0,1)\}$ and $S^1\{(1,3), (2,5)\}$.
 - i) Find the matrix A representing T relative to the bases S and S¹.
 - ii) Find the change of basis matrix from S to S¹. (3,3,4)

UNIT-II

- V. a) Find all values of Z which satisfies $e^{\frac{1}{z}} = 1 i$.
 - b) If f(z) is analytic is a domain D and |f(z)| is a non-zero constant in D, then prove that f(z) is constant in D.
 - c) If u(x,y) is a harmonic function, then prove that $w=u^2$ is not harmonic unless u is a constant. (3,4,3)
- VI. a) Obtain Taylor's / Laurent's series expansion of $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$, which are valid in :
 - i) |z| < 1
 - ii) 1 < |z| < 4
 - iii) |z| > 4
 - b) Find the sum of the residues of the function $f(z) = \frac{\sin z}{z \cos z}$ at its pole inside the circle |z| = 2 (5,5)
- VII. a) Evaluate: $\int_{0}^{\pi} \frac{3d\theta}{9 + Sin^{2}\theta}$ using complex integration.
 - b) Examine the exponential transformation $w = e^z$ (5,5)