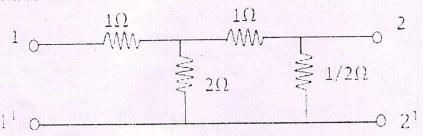

Exam. Code: 0927 Sub. Code: 6896

1128


B. Engg. (Electronics & Comm. Engineering) 3rd Semester

		EE-309: Electrical Science	
Time allo	owed: 3		
Note: A	ttempt nd selec	five questions in all, including Question No. I which is compulsory ting two questions from each Section. Use of scientific calculator is allowed. $x-x-x$	
Q1.	Answ	er the following:-	
	(a)	A node where only two elements meet doesn't require a nodal equation. Why.	
	(b)	What is the time constant of an RC circuit excited by a DC source?	
	(c)	At what condition an inductor can be considered as linear device?	
	(d)	A unit pulse of width 1 sec is applied to an R – L series circuit with R = 1Ω and	
		L = 1H. Sketch the current response i(t) of the circuit.	
	(e)	Describe the principle of constant K low pass filter and high pass filter.	
		SECTION A	
0.2		What is the first and second form of compensation theorem?	
Q2.	(a)	Describe and explain Norton's theorem with suitable example.	
03	(b)	Find i(t) using Thevenin's theorem.	
Q3.	(1)		
		$i(t)$ $\leq 4\Omega$	
		$5\delta(t)$ \uparrow \uparrow $1/3F$ \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow	
		50(t)	
		D. Lala and power is delivered	
	(b)	In the following network determine R _L such that maximum power is delivered	
		to it. 3Ω	
		377 227	
		$(^+)_{10}$ \searrow Ω \geqslant Ω \geqslant R_L	
Q4.	(a)	A 3-phase, 6 poles, 50 Hz, induction motor has full load speed of 960 rpm with	
Q4.	(11)	its slip rings shorted. The motor drives a constant torque load. If the rotor speed	
		is reduced to (a) 800 rpm (b) 400 rpm by inserting external resistance in rotor	
		circuit, compare the rotor ohmic losses at these two reduced speed with full load	
	(b)	Express the Z parameters of a two port network in terms of Y parameters.	
	(0)	SECTION B	
OF	(2)	A voltage source $V = V_m \sin \omega t$ is applied to a series R-L circuit. Determine the	
Q5.	(a)	expression for the average power consumed.	
		expression for the without	

(b) In the following network determine the total power supplied by the source. (5)

Q6. (a) Find the Y and Z parameters of the following two port resistive network. Verify (5) the relation between them.

- (b) Derive relation between y and T parameters for any two port networks. (5)
- Q7. (a) In a DC machine, how coil-side emf varies towards the outer side of poles? (2)
 - (b) What could be the reasons if a 3-phase synchronous motor fails to start? (3)

 Describe the effect of varying the excitation on the armature current and power (5)
 - (e) Describe the effect of varying the excitation on the armature current and power factor of a synchronous motor when input power to the motor is maintained constant.