Exam. Code: 0907 Sub. Code: 6695

1128

Bachelor of Engineering (Bio-Technology) 3rd Semester

MATHS - 302: Linear Algebra and Operations Research (Common with IT)

Time allowed: 3 Hours

Max. Marks: 50

Note: Attempt any five questions, including Question No. 1 which is compulsory and selecting at least two questions from each Unit. Use of Calculator is allowed.

0-0-0

- I. Attempt the following questions:
 - a) Define a vector space with suitable example. Give an example of finite and infinite dimensional vector space.
 - b) State Cayley - Hamilton theorem. Write any two application of it.
 - c) Define a diagonalizable matrix. Why we diagonalize a given matrix? Write a matrix that is not diagonalizable with justification.
 - d) While solving a LPP: Maximize Z = CX such that AX = b, $x \ge 0$; what indicates the following:-
 - Presence of redundant constraints.
 - ii) No feasible solution.
 - e) Give any three applications of duality theory.

 (5×2)

Express the matrix:- $\begin{bmatrix} 5 & 1 \\ -1 & 9 \end{bmatrix}$ as a linear combination of the matrices:-

$$\begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}.$$

- Find the rank of the matrix:- $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \end{bmatrix}$ b)
- Determine whether the set of vectors will be a basis of R^3 . c)

$$\vec{V_1} = (1,2,1), \ \vec{V_2} = (2,9,0), \ \vec{V_3} = (3,3,4).$$
 (3,3,4)

- Verify Cayley Hamilton theorem for the matrix:- $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and find A^{-1} using it III. a) find A-1 using it.
 - Find the matrix P that diagonalizes the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \\ 1 & -2 & 1 \end{bmatrix}$. b) (5,5)
- IV. Consider the system of equations:a)

$$x_1 + 2x_2 + 4x_3 + x_4 = 7$$
, $2x_1 - x_2 + 3x_3 - 2x_4 = 4$. Here $x = 1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 0$ is a feasible solution. Reduce the feasible solution to two different basic feasible solutions.

Use two phase simplex method to solve:b)

Maximize:
$$Z = 5x_1 - 4x_2 + 3x_3$$

Subject to the constraints:-

(5,5)

$$2x_1 + x_2 - 6x_3 = 20$$
, $6x_1 + 5x_2 + 10x_3 \le 76$, $8x_1 - 3x_2 + 6x_3 \le 50$, $x_1, x_2, x_3 \ge 0$

UNIT-II

Solve the following LPP using the result of its dual problem:-V. a)

Minimize:-
$$Z = 24x_1 + 30x_2$$
,

Subject to the constraints:-

$$2x_1 + 3x_2 \ge 10$$
, $4x_1 + 9x_2 \ge 15$, $6x_1 + 6x_2 \ge 20$, $x_1, x_2 \ge 0$

b) Use dual simplex method to solve:-

> Minimize:- $Z = 3x_1 + x_2$

Subject to the constraints:-
$$x_1 + x_2 \ge 1$$
, $2x_1 + 3x_2 \ge 2$, $x_1, x_2 \ge 0$ (5,5)

- VI. a) Find the initial basic feasible solution to the following transportation problem:
 - i) North-West corner cell method.
 - ii) Least cost cell method.

3 (1 140)			TO		
		1	2	3	SUPPLY
FROM	1	2	7	4	5
	2	3	3	1	8
	3	5	4	7	7
	4	1	6	2	14
DEMAND		2	9	18	sem vieti

State which of the method is better?

b) Solve the following assignment problem:-

	1	2	3	4
A	10	12	19	11
В	5	10	7	8
C	12	14	13	11
D	8	15	11	9

(5,5)

- VII. a) Compare CPM and PERT explaining similarities and mentioning where they mainly differ.
 - b) A small project consists of seven activities for which the relevant data are given below:-

Activity	Preceding Activities	Activity Duration (weeks) 4		
A	a in alsiet out the			
В	•	7		
C		6		
D	A, B	5		
E	A, B	7		
F	C, D, E	6		
G	C, D, E	5		

- i) Draw the network and find the project completion time.
- ii) Calculate total float for each of the activities and highlight the critical path.
- iii) Draw the time scaled diagram.

(5,5)