

Exam.Code: 1029 Sub. Code: 7853

M. Tech. (Material Science and Technology) First Semester MST-103: Physics of Nano-Materials

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following briefly:
 - a) Explain the meaning of the terms (i) Fermi surface (ii) Brillouin zone.
 - b) Is it possible to observe a Compton Effect with visible light? Why?
 - c) Mention the applications of nano-wires.
 - d) How nano materials can improve the mechanical properties of the bulk materials.
 - e) Distinguish between Fermions and Bosons.

(5x2)

UNIT-I

II. a) Show that the de Broglie wavelength of a panicle, of charge e, rest mass m₀, moving at relativistic speeds is given as a function of the accelerating potential V

$$\lambda = \frac{h}{(2m_0 eV)^{1/2}} \left(1 + \frac{eV}{2m_0 c^2} \right)^{-1/2}$$

- b) Use the Schrodinger equation to obtain the expressions for the reflection and transmission coefficients of a particle of mass m and energy E, approaching a potential step of height V_o for the case of E<Vo. (5,5)
- III. a) Separate the Schrodinger equation for a time-independent potential, into a time-independent Schrodinger equation and an equation for the lime dependence of the wave function.
 - b) Compare the probability for three bosons to be in a particular quantum state with the probability for three classical particles to be in the same state.

(5,5)

P.T.O.

- IV. a) Obtain an expression for the thermodynamic probability of a system obeying M-B statistics and hence evaluate the M-B distribution function.
 - b) Compare the quantum confinement and resulting structures like Quantum dots, quantum wells and their physical significance. (5,5)

UNIT-II

- V. a) Discuss the concept of effective mass of an electron in a metal. Give its physical significance.
 - b) Explain in detail the Sol-Gel method to prepare nanomaterials of different types like Aerogel and Xerogel. (5,5)
- VI. a) Explain with examples to show that magnetic nanomaterials show a variety of unusual magnetic behavior when compared to bulk materials.
 - b) Write a note on the morphology of nanoparticles and how physical and chemical characteristics depend on them. (5,5)
- VII. a) Write a short note on application of nanomaterials on the basis of their optical properties.
 - b) Discuss the density of states in 0-D, 1-D and 2-D nanomaterials. (5,5)