Exam.Code:1017 Sub. Code: 7782

1128

M.E. Electrical Engineering (Power System) First Semester

EE-8104: Digital Control Systems

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt any five questions.

x-x-x

- a) Enumerate basic elements of a digital control system and show the block diagram I. representation of such a system.
 - b) Illustrate the discrete data and digital control system with microprocessor -(5,5)controlled system.
- a) Find the inverse Z- transform using partial fraction expansion for the following II. function

$$F(z) = \frac{z(z+2)}{(z-3)(z^2-z+1)}$$

- b) Discuss principle of discretization. How is ideal sampler different from its actual sampler counterpart.
- Why is z-transform useful in analysis of digital control systems? Define Pulse transfer III. function. Also mention limitations of z-transform.
- Investigate controllability of the following state model of a digital control system: IV.

$$x(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \\ -6 \end{bmatrix} u(k)$$
 (10)

- Define stability of digital control systems. Enumerate various methods used for V. (10)stability investigation of such systems.
- Explain necessary and sufficient conditions for arbitrary pole-placement in state-VI. (10)feedback control method.
- Discuss appropriate quadratic performance indices for optimal solution of state VII. (10)regulator and output regulator problems.

P.T.O.

VIII. Discuss the following:-

- a) Stability in the z-domain.
- b) Configuration of a basic digital control scheme.

(5,5)

x-x-x