Exam.Code:1017 Sub. Code: 7781

1128

M. E. Electrical Engineering (Power Systems) First Semester

EE-8103: Optimization Techniques

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt any five questions.

x-x-x

1. (a) Consider the following problem:

(5)

$$\min W = -2x - 4y - 3z$$

subject to $x + 4y + 3z \le 240$, $2x + y + 5z \le 300$, $x, y, z \ge 0$

The optimal solution of this problem is given below where u and v correspond to the slack variables:

c_B	y_B	x_B	\boldsymbol{x}	y	z	14	υ
-4	y	180/7	0	1	1/7	2/7	-1/7
-2	\boldsymbol{x}	960/7	1	0	17/7	-1/7	4/7
		W = 2640/7	0	0	17/7	6/7	4/7

Discuss the effect on the optimality of the solution, when a new variable is added with corresponding data as: activity vector= $(2,2)^T$ and cost value c=-3.

(b) Using bounded variable technique, solve the following LPP:

(5)

$$\max -3x+4y$$

subject to

$$x - 2y \le 10$$
, $2x + 5y \le 15$, $0 \le x \le 4$, $0 \le y \le 3$,

 Find the optimal solution of following bounded variable transportation problem to minimize the transportation cost: (10)

				availability
	4	9	2	30
Cost	3	12	5	25
	11	6	2	25
Requirement	35	23	22	

such that $x_{ij} \geq 0$ and the upper bounds are given in the following matrix:

$$[u_{ij}] = \begin{bmatrix} 10 & 15 & 20 \\ 15 & 10 & 25 \\ 22 & 20 & 24 \end{bmatrix}$$

3. Use wolfe's method to solve the quadratic programming:

(10)

$$\min \quad Z = -10x - 25y + 10x^2 + y^2 + 4xy$$

subject to

$$x + 2y \le 10$$
, $x + y \le 9$, $x, y \ge 0$.

4. (a) Check whether following functions are convex, concave, or neither convex nor concave: (i) f(x,y) = xy + x + y, $(x,y) \in \mathbb{R}^2$

(ii) $f(x, y, z) = -x^2 + 2xy + 3xz + 6yz$, $(x, y, z) \in \mathbb{R}^3$

(2.5 + 2.5)

(b) Let $S \subseteq \mathbb{R}^n$ be a convex set and $f: S \to \mathbb{R}$. Then show that f is a convex function on S if and only if its epigraph is a convex set. (5)

- 5. (a) Let \bar{x} be a local minimum point of the problem min f(x) subject to $g_i(x) \leq 0$, i = 1, 2, ..., 3. Then $d^T \nabla f(\bar{x}) \geq 0$ for all $d \in D(\bar{x})$. (5)
 - (b) Consider the LPP max Z=4x+3y subject to $x+y\leq 8$, $2x+y\leq 10$, $x,y\geq 0$. Use KKT theorem to show that x=2, y=2 can not be an optimal solution of the given problem. (5)
- 6. Using Lagrange multiplier method minimize the function $f(x, y, z) = 2x^2 + y^2 + 2z^2$ subject to the constraints (10)

$$x + 2y + 3z = 6, \quad x + 3y + 9z = 9$$

- 7. Using Newton's method find the minimum value of the function $f(x, y, z) = 2x^2 + 3y^2 + 2z^2 + 2xy$ starting with (x = -2, y = -3, z = 1). (10)
- 8. (a) Solve the following linear fractional programming problem by the Charnes and Cooper algorithm: (5)

$$\max Z = \frac{2x_1}{x_1 + x_2 + 1}$$

subject to

$$x_1 + x_2 \le 1$$
, $x_1 + 2x_2 \le 1$, $x_1, x_2 \ge 0$

(b) Let f be a positive quasiconvex function defined over a convex set $S \subseteq \mathbb{R}^n$. Show that g(x) = 1/f(x) is quasiconex function on S.