Exam.Code: 1017 Sub. Code: 7779

1128

M. E. Electrical Engineering (Power Systems) First Semester

EE-8101: Advanced Power System Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt any five questions. Assume any missing data.

 $x-x-\lambda$

Q I. a) For the network shown in figure below, form the oriented graph and bus incidence matrix, A.

b) Find the Y_{BUS} using the bus incidence matrix if each of the elements has the admittance value of j 1.4 in the network shown in Q.I (a).

[5]

Q II. A 3-bus, three line system has been shown in the figure below. The data of the line are as given in the Table. The voltage at bus 2 is maintained at 1.03 p.u. and maximum and minimum reactive power limits at bus 2 are 35 and 0 MW respectively. Taking bus 1 as slack bus obtain the load flow solution using N-R method.

Holl using 14-16 inculou.					
Bus no.	Voltage	P _d (MW)	Q _d (MVAR)	P _g (MW)	Q _g (MVAR)
1	1.05		-	3 (4)	-
2	1.03	20		50	20
3		10	0	60	25

Line	Impedance(p.u.)		
1-2	0.08+j0.024		
1-3	0.02+j0.06		
2-3	0.02+j0.018		

Q III. The admittance values in each of three lines shown below have value of -j1 p.u. Find Y_{bLS} if a phase shifting transformer is connected between buses 1 and 2. Assume $a = 1 \angle 5^o$ [5]

b) Deduce the equations for DC load flow problem. Hence extend the formulation to obtain the solution for AC-DC load flow. [5]

Q IV A 33 KV line has a resistance of 4 ohm and reactance of 16 ohm respectively. The line is connected to generating station bus bars through a 6000 KVA step up transformer which has a reactance of 6%. The station has two generators rated 10,000 KVA with 10% reactance and 5000 KVA with 5% reactance. Calculate the fault current when a short circuit KVA when a 3-phase fault occurs at the H.V. terminals of the transformers and at the load end of the line. [10]

Q V. Deduce the sequence equivalent circuit for a system when two of its phases A & C get open circuited at any point on the lines.

Q VI. Use Lagrangian function to develop an optimal power flow optimization problem in any electrical power system having hybrid generation systems. Hence draw the incremental cost curves. How are Kuhn-Tucker's conditions applied to the problem?

Q VII. Discuss structure and formation of Hessian matrix as used in the power system state estimation problem. [10]

Q VIII. Write short notes on:

- i) Method of least squares
- ii) Fast Decoupled load flow solution

[5*2=10]