

UNIVERSITY INSTITUTE OF ENGINEERING & TECHNOLOGY PANJAB UNIVERSITY, CHANDIGARH – 160014

1. Name of the Faculty Member: Dr. Anil Kumar

Designation: Assistant Professor
 Department: Applied Sciences
 Date of Birth: August 05, 1984

5. Contact details: Email: akumar13@pu.ac.in

Mobile: +91 8968620308

6. Specialization: Organic Chemistry/Synthetic Organic Chemistry/Fluorine Chemistry

Degree	University	Institute Name	Year of Passing
B.Sc. (Medical)	Panjab University	SCD Govt. College, Ludhiana	2005
M. Sc. (Chemistry)	Panjab University	Sanmati Govt. College of Science Education & Research, Jagraon, Ludhiana	2007
Ph.D. (Chemistry)	Panjab University	Department of Chemistry, Panjab University, Chandigarh	2015

8. Professional Background

Designation	Institute Name	Duration
Assistant	Department of Applied Science, UIET, Panjab	Feb, 2013-
Professor	University, Chandigarh	till date
CSIR-SRF	Department of Chemistry, Panjab University, Chandigarh	July 2012-
CSIK-SKI	Department of Chemistry, Fanjao Oniversity, Chandigain	Feb 2013
CSIR-JRF	Department of Chemistry, Panjab University, Chandigarh	July 2010 -
CSIK-JKI	Department of Chemistry, Fanjao Omversity, Chandigarn	June 2012
UGC-Project	Department of Chemistry, Panjab University, Chandigarh	Aug 2009 -
Fellow	Department of Chemistry, Fanjab Oniversity, Chandigain	June 2010

9. Award/Honours/Fellowships etc.

- Qualified CSIR/UGC National Eligibility Test (NET-LS) in Chemical Sciences (December 2008 and June 2009).
- Qualified CSIR/UGC National Eligibility Test in Chemical Sciences for Junior Research fellowship (CSIR/UGC-JRF) and Eligibility for Lectureship (December 2009).
- Qualified All India Graduate Aptitude Test (GATE) in Chemical Sciences (All India Rank 2200) in 2010.
- Awarded with Rajiv Gandhi National Fellowship for the year 2010 by University Grant Commission (UGC), New Delhi.
- Awarded with Gold Medal at the 5th Chandigarh Science Congress in 2011 for best oral presentation.
- CSIR-SRF in July 2012

10. List of best publications

- i. Friedel–Crafts Arylation of α-Hydroxy Ketones: Synthesis of 1,2,2,2-Tetraarylethanones, **Anil Kumar**, Tej V. Singh, Sajesh P. Thomas and Paloth Venugopalan, *Eur. J. Org. Chem.* **2015**, 1226-1234 (ISSN: 1099-0690, Impact Factor 3.068).
- Indium(III) bromide catalyzed direct azidation of α-hydroxyketones using TMSN₃,
 Anil Kumar, Ramesh K. Sharma, Tej V. Singh, and Paloth Venugopalan,
 Tetrahedron, 69, 2013, 10724-10732 (ISSN: 0040-4020, Impact Factor 2.803).
- iii. Microwave assisted fluorofunctionalization of phenyl substituted alkenes using selectfluorTM, **Anil Kumar**, Tej V. Singh, and Paloth Venugopalan, *Journal of Fluorine Chemistry*, 150, **2013**, 72-77 (ISSN: 0022-1139, Impact Factor 2.033).
- iv. EWG assisted nucleophilic fluorination using PPHF: a strategy for the synthesis of 1,2,2-triaryl-2-fluoroethanones, **Anil Kumar**, Anil K. Pal, Rishi D. Anand, Tej V. Singh, and Paloth Venugopalan, *Tetrahedron*, 67, **2011**, 8308-8313 (ISSN: 0040-4020, Impact Factor 3.219).

11. Highlights of Research work:

Research work mainly includes the introduction of fluorine atom into organic substrates by electrophilic (F^+) and nucleophilic (F^-) fluorination methods. The nucleophilic substitution reactions of α -hydroxyketones have also been a part of our research work toward the development of newer methods to synthesize α -functionalized ketones. The nucleophilic substitution of hydroxyl group in α -hydroxyketones has been achieved by using triethylsilane (TESH), azidotrimethyl silane (TMSN3), arenes (Ar) and heteroarenes (HetAr) as nucleophiles. Besides nucleophilic functionalization, we are also aimed toward radical mediated α -hetero atom functionalization of ketones to synthesize psychoactive drugs such as α -amino ketones.